As duas primeiras versões dos algoritmos treinados serão lançadas no próximo dia 24 durante o aniversário de 51 anos da Embrapa em Brasília
O Netflora, metodologia desenvolvida pela Embrapa, reúne um conjunto de algoritmos treinados com inteligência artificial (IA) para reconhecer espécies florestais. Realizado com base em características botânicas, disponíveis em um banco de dados, esse aprendizado permite identificar árvores de interesse comercial e indicar a sua localização exata na floresta. Espécies como castanheira, cumaru-ferro, açaí e cedro são reconhecidas com índices de acerto de 95%, resultado que reduz custos de produção e torna mais sustentável o manejo de florestas na Amazônia.
De acordo com o pesquisador da Embrapa Acre, Evandro Orfanó, um dos coordenadores dos estudos, o Netflora confere maior automação ao planejamento da atividade florestal e aumenta a precisão e eficiência na execução de planos de manejo. “Uma vez treinado e especializado, o algoritmo também fornece métricas, como diâmetro e área de copa, que possibilitam estimar, por meio de equações que relacionam formas e tamanhos, o volume de madeira de cada árvore. Essas ferramentas tecnológicas contribuem para o aumento da produção florestal com conservação ambiental”, afirma.
As pesquisas para viabilizar o uso de inteligência artificial no setor florestal são desenvolvidas pela Embrapa desde 2015 e contemplam diferentes aspectos da atividade. Na fase atual, os estudos são realizados por meio do projeto Geotecnologias aplicadas à automação florestal e espacialização dos estoques de carbono em uso nativo e modificado da terra na Amazônia Ocidental (Geoflora), executado no Acre, Rondônia, Roraima, Amapá, Pará e Amazonas, em parceria com o Fundo JBS pela Amazônia.
A adoção dessas tecnologias implica investimentos em computadores, drones, baterias e estrutura adequada de escritório. O gasto inicial é compensado pela redução drástica nos custos de produção, especialmente na etapa do inventário florestal. No levantamento tradicional de espécies, com equipes em campo, um hectare de floresta mapeado tem custo estimado entre R$ 100 e R$ 140, enquanto com a metodologia Netflora esse valor cai para R$ 4 a R$ 6.
Essa redução é proporcionada pela agilidade na obtenção e processamento de informações sobre a área a ser manejada. “Uma empresa florestal que utiliza o manejo tradicional consegue mapear até 10 mil hectares de floresta por ano. Com o uso de IA, o ganho em capacidade operacional pode saltar para até um milhão de hectares no mesmo período”, acrescenta Orfanó.
Para Andrea Azevedo, diretora do Fundo JBS pela Amazônia, ainda existe pouca orientação na exploração sustentável de produtos florestais e as tecnologias com IA podem contribuir para a melhoria da gestão do manejo de florestas e conservação da Amazônia. “A metodologia vai possibilitar um avanço no planejamento e coleta de dados precisos em grandes áreas manejadas. Um sistema de manejo eficiente torna a atividade florestal mais produtiva, reduz impactos sobre os ecossistemas e facilita a vida dos extrativistas e outros atores envolvidos com o setor”, destaca.
Resultados validados
Para construir o banco de dados de treinamento de algoritmos, foram mapeados mais de 40 mil hectares de floresta, em 37 sítios (áreas) do Acre, Rondônia e sul do Amazonas, com uso de drones. Em dois anos de estudo foram realizados cerca de mil planos de voos e cada um gerou, aproximadamente, 300 imagens aéreas, que foram tratadas e transformadas em ortofotos (imagens georreferenciadas e de alta resolução). Com base na gama de informações contidas nas ortofotos foram treinados nove algoritmos, com finalidades e performances de acerto distintas.
“Temos algoritmos que reconhecem uma única espécie florestal, outros têm capacidade para identificar diferentes grupos ou as principais árvores madeireiras e não madeireiras do Acre e outras localidades da Amazônia. Alguns algoritmos já alcançaram alta performance, mas esse aprendizado será contínuo”, reforça Orfanó, que estima a meta de mapeamento do projeto em 80 mil hectares de floresta, com inserção de novas áreas de interesse comercial na Amazônia, para ampliar a construção do banco de dados.
Ainda de acordo com o especialista, na medida em que aumentar o conhecimento sobre a floresta, será possível intensificar o aprendizado dos algoritmos treinados e habilitar novos algoritmos, por grupo de espécies, conforme demandas regionais.
Lançamento no 51º aniversário da Embrapa
As duas primeiras versões dos algoritmos treinados serão lançadas em 24 de abril durante as comemorações do aniversário de 51 anos da Embrapa. Um algoritmo tem capacidade para reconhecimento do açaí solteiro (Euterpe precatoria Mart.) nas fases produtiva (com cachos) e não produtiva, no Acre. O outro, além do açaí solteiro, é capaz de reconhecer mais nove espécies de palmeiras da Amazônia (paxiúba, buriti, jaci, ouricuri, murmuru, tucumã, inajá, patauá e bacaba).
Até fevereiro de 2025, serão disponibilizados outros sete algoritmos, com capacidade para identificar espécies madeireiras e não madeireiras, em diferentes localidades amazônicas. A agenda de lançamentos também inclui algoritmos para o reconhecimento de espécies em sistemas agroflorestais (SAFs) e para a atividade de monitoramento ambiental.
Como utilizar a metodologia
De livre acesso, o Netflora está disponível no repositório do GitHub e pode ser facilmente executado por meio de um Notebook Colab simplificado (plataforma colaborativa aberta e gratuita, hospedada na nuvem do Google). A metodologia é dirigida a empresas do setor florestal, profissionais de instituições de ensino superior, associações agroextrativistas e órgãos ambientais que demandam informações sobre inventário florestal e monitoramento pericial de ecossistemas florestais na Amazônia, entre outros públicos.
O uso da metodologia não demanda conhecimentos especializados; entretanto, o passo a passo para sua adoção pode ser conferido no curso Netflora na Prática: Guia para detecção de espécies florestais a partir de imagens de drones e inteligência artificial, de acesso gratuito, na plataforma e-Campo, ambiente de aprendizagem virtual da Embrapa. Para mais informações sobre como utilizar os algoritmos treinados, acesse a página do Netflora.
Potencial de uso
Cada algoritmo do Netflora possibilita incontáveis combinações de treinamento. Além de conferir maior agilidade à etapa de inventário florestal, a metodologia pode fornecer informações para estimar a produção e aperfeiçoar técnicas em planos de manejo e contribuir para ajustar estratégias de colheita para espécies não madeireiras.
Outra classe de algoritmos será capaz de reconhecer pilhas de toras, madeira serrada e clareiras abertas por evento climático ou provocadas pelo homem, entre outras ações no ambiente florestal. “Também estão em treinamento algoritmos aptos a estabelecer correlações entre aspectos da morfologia de copa das árvores com estoques de carbono na floresta. Esse conhecimento poderá auxiliar nas avaliações sobre os efeitos das mudanças climáticas na dinâmica de clareira naturais”, observa Orfanó.
Sobre o Fundo JBS pela Amazônia
O Fundo JBS pela Amazônia é uma organização sem fins lucrativos criada em 2020 para recuperar áreas degradadas e apoiar modelos inclusivos e rentáveis que gerem valor para a floresta em pé. Para alcançar esses resultados, o Fundo trabalha dentro de três grandes eixos de atuação: Cadeias Produtivas em Áreas Abertas, Bioeconomia e Ciência e Tecnologia. Juntos eles alavancam e potencializam a produtividade em áreas degradadas, fortalecem o ecossistema de negócios gerados em torno da floresta em pé com o apoio de soluções disruptivas e estruturantes capazes de agregar valor aos produtos das florestas e desenvolver conectividade, mobilidade e energia renováveis.
Até março de 2024, a organização apoiou 20 projetos com investimentos de R$72,9 milhões comprometidos. Juntas, essas iniciativas beneficiaram mais de 6,5 mil famílias; conservaram 1,9 milhão de hectares sob manejo melhorado/recuperado; apoiaram 31 bolsas de pesquisas, fortaleceram 11 cadeias produtivas e destravaram R$3,2 milhões em crédito para negócios da bioeconomia. Saiba mais: www.fundojbsamazonia.org.